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7he direct-interaction approximation for turbulence 1is extended to
predict the covariance and averare Green's function of a generalized velocity
u(x,t|r). The latter is uefined as the velocity measured at time r in the
fluid element which passes through the point x at time t. The resulting
formulas for triple moments involve interrals over the Eulerian time-history
of the fluid. The approximation is then altered so that the integrals are
instead over Lagrangian histories, measured alons the particle paths. The
alteration is made necessarv and is uniquelv determined by recuiring sirul-
taneously the consistency properties that energy be conserved; that there
exist formal inviscid equipartition solutions; and that the dynamics exhibit
invariance under a class of random Galilean transformations. In the altered
approximation, the relaxation times associated with energy-transfer are
Lagrangian memory times determined bv the viscous anc oressure forces., As
a result, the approximation yields the Kolmogorov inertial- and dissipation-
range laws. The corresponding approximation for comvection of a passive
scalar field yields some exact results of Tavler c¢nd yields Richardson's law

for the relative diffusion of two particles.




{ 1. INTRODUCTION

It was stressed in an earlier paperl that Eulerian moments do not provide
1 an appropriate description of the convection of small spatial scales of turb-

ulence by large spatial scales. Knowledge of the Eulerian velocity covariance
alone does not permit discrimination between two importantly different

situations., In one, the time-dependence of the small-scale features, measured

at fixed points in space, is due to internal distortion. In the other, the
time-depenience is due to the small scales being siept along, almost undis-
torted, by the large-scale motion. In the first situation, the measured
characteristic times of variation are relevant to the transfer of energy
among the small scales, while in the second this is not so. This suggests
that closure approximations which involve only low-order Eulerian moments do
not retain sufficien information to represent properly the energy transfer
among sxall scales which are convected by large scales, In Ref., 1 it was
shown in detail that this difficulty makes it impossible for the direct-
interaction approxinatiou2’3 and a related, higher Eulerian approximation
to predict correct inertial range dynamics.

A generalized velocity gﬂﬁ,tlr) may be defined as the velocity measured
at time r within the fluid element which passes through the point x at time t.
The function gﬁg,t]t) coincides with the Eulerian field u(x,t), while gﬂg,tlr)
considered as a function of r at fixed x and t is equivalent to the usually
defirned Lagrangian velocity. The two situations posed in the preceding para-

graph can give similar t dependence of u(x,t) at fixed x. However, internal

distortion of the small scales implies variation of u(x,t|r) with both t and
r, while undistorted convection of these scales implies that the convection

induces a change of the t dependence but no change in the r dependence at
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fixed x. This suggests that knosiledge of the covariance of the full function
g(g.tiz‘) may permit sufficient discrimination between the two cases,

In the present paper, an aiteration of the direct-interaction apprveximation
is formulated which gives closed statistical equations involving the covariance
of u(x,t|r} and the average response of u(x,t|r) to infinitesimal perturbations.
Censtruction of *he finzl ayproximation involves two stages., First, the direct-
fnteraction approximation for u(x,t|r) is coastructed by a straightforward
extension of previously used techniques. This yields expressions for the
triple moments in terms of the covariance function and the average response
function. At this stage, the equation for evolution of the Eulerian ccvariance
is exactly the same as in the purely tulerian direct-interaction scheme.

The equations so formed preserve certain fundamental properties of the
exact dynamics: Conservation of energy by the nonlinear interaction, maintain-
ance of the incompressibility of the Eulerian field, invariaace of total
stress-enerzy under the transformation from fulerian to Lagrangian ceocrdinates,
and the sxistence of formal inviscid equipartition equilibrium states. The
iaability of the cirect-interactios equations correctly to represent convection
effects is displayed in sharp fors by failure to preserve a further fundavental
property of tne exact dynamics: iuvariance under random Galilean transformation.
Supposc that each flow in the statisticai ensemble is subjected to a transla-
tional velocity which is constant in space and time but which has a Gaussian
envemb ls distribution. Clearly the internal dynamics of the turbulence is
unaffected, and this is expressed analytically by certain transformation laws
for the statistical functiocas under the random translation. These laws are

badly viclated by the direct-interaction equationms.
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The second stage in the procedure is to alter the direct-interaction
expressions for the triple moments in such a way @s to keep the conservation,
incompressibility, invariance, and equilibrium properties alreadv incorporated
and to realize, simultaneously, a restrictec furm of invariance to random
Galilean transformation. The unaltered approximation for the <triple mouents
invelves space-time integrals which express memory and relaxation effects in
the turbulent motion. The integrals have the form of Eulerian time-histories
(histories at fixed points in space which then are integrated over svace). In
the zltered approximation, the space-time integral’: are changed so that they
instead are over Lagrangian histcries (fluid-element space-time trajectories).
The effective relaxation or memory times are now measured in coordinates
moving with the flow instead of in fixed coordinates, and the evolutior cof
the ELuierian velocity covariance is now inextricably coupied tc that of the
full Lagrangian covariance.

Tne prescription for the alteration is heuristic. However, it involves
5o arbitrary csfhistants or functions, and seems uniquely determined by the
required invariance, conservation, and equilibrium properties. One important
property of the original approximation is not shown tc survive the alteration,
The direct-interaction equations are exact statistical equations for a certain
dynamical model. This guarantees that the results for the covariances are
realizable as averages over some ensemble of velocity fields and that, conse-
quently, gross unphysical predictions such as negative spectra are oprecluded.
The guarantee does not presently exist for the altered approximation. The
solutions so far found give no hint of unphysical behavior and, in every case,

represent improvements over the predictions of the unaltered equatioms.
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The new equations are called the LHDI (Lagrangian-History Direct-
Interaction) approxikation., Thev are constructed first for the convection of
a2 passive scalar field by a prescceibed turbulent flow, and then for the
dynamics of the turbulent velocity itself.

The LHDI equations appear to yield inertial and dissipation ranges at
high Keynolds numbers which obey Kolmogorov's laws. This is because the
effective relaxation times in the energy-transfer function are Lagrangian
memory times., The approximation may in fact be regarded as a mathematically
precise (but dynamically approxirmate) embodiment of Kolmogorov's original
idea that the dynamics of straining and energy-transfer should be examined in
ccordinates which move locally with the fluid. In the case of the scalar
field, the LHDI equations yield some exact resuits of Taylor for the cispersion
of particles by homogeneocus, srtationary turbulence. When the velocity field
has a Kolmogcrov inertial range, the scalar equations yield Richardson's law

for the relative diffusion of tso particles.

2. GENERALIZED VEILOCITY FIELD
Let u(x,t) be the velocity at time t at the point x in a fixed Cartesian

coordinate systes (Eulerian velocity}. Define the field u(x,t|r) by

u(x,rir) = u(x,r), (2.1)
(372t + ulx,t)-glulx,t{r) = 0. (2.2)

Eq. (2.2} tolds for all tand r (t > r and t < r)., Ko spatial boundary -on-
ditions on u(x,ri{r) are needed, or may be iwposed, for t £ r. Egs. (2.1) and

(2.2) imply that
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u(x,tir) = ulx-g(x,t|r),r), (2.3)

whare Eﬁf,t%r) is defined as the displacement, during the interval r to t, of
the particle which arrives at (x,t). Thus, u(x,t|r) is the velocity at time

r of the particle which arrives at x at time t. In what follows, u(x,tir)

will be called the generalized velocity., The time argument preceding the
vertical bar will be called the labeling time and that following the bar will
be called the measuring time. If (x,t) is taken as some particular point (g,to)

and to is an initial time, then

ula,t,ir) = u(a,r), (2,4)

. . . . y .
where w(a,t) is the Lagrangrian velocity as usually defined. Considered as a
function of t at fixed r, gﬁg,tir) gives the velocities measured at time r of
the fluid elements which pass through a given point x at various times t.

How let u(x,t) obey thz incompressible lavier-Stokes equation

£3/3t -~ v + u(x,t)<¥lulx,t) = -Tp, (2.5)
Veu(x,ti = 0, (2.6)

where v is kinematic viscosity and p is kinematic pressure. Then (2.1), (2.2},
(2.5), and (2,6) form a complete set which determine u(x,t) :nd u(x,t!r) when
the spatial boundary conditions and initial conditions on u(x,t) are specified.
Fig. 1 illustrates the path which u(x,tlr) follows in the (t,r) plamne as it
evolves from a specified initial fieldlggl,toltc). The evolution along the
diagonal from (tc,to) to (r,r) obeys (2.5} and (2.6), and the evolution trom
(r,r) to (t,r) obeys (2.2).

The invariance properties

2 u.(x,tir)dsx = 0, 3—-'u.(x,tir)u.(x.tlt)d3x = 0, etc. (2.7)
t i~ ot i~ i~




12.2) and {2.%}, provided that the normai component of
the tulerian veiocity vanishes on the boundaries. Eq. (2.7) reflects the
fact that g(},tlr) is a relabeling of the values of the Lulerian field u(x,r)
according to a coordinate transformatior defined by the displacement £(x,tlr).

In the case of an incompressible Eulerian field, the Jacobian of the trans-

formation equals one.“ In general,
E‘g(l,t]r) 0 (-~ #r). (2.8)

It i easi)y seen from (2.2) that (2.6) does not imply a divergenceless
generalized velocity.

Consider next the passive scalar field ¥(x,t) wahich satisfies
(3/3t - <¥2)u(x,t) = - ulx,t]t)-Tu(x,t), (2.9)

where xis the kinematic diffusivity and (2.6) is assumed. A generalized field
#(x,t|r) may be defined by
wix,r|r) = uix,r), $2.10)

W(x,t{r)/at = - u(x,tit)-¥a(x,tir). (2.11)

It satisfies invariance relations similar to (2.7). If ¢ = 0, it is clear
from (2.9)-(2.11) that i(g,tlr) is independent of r, which expresses the

constancy of the scalar concentration along the particle trajectories.

3. RESPONSE TO PERTURBATIONS

tConstruction of the direct-interaction approximation requires the intro-
duction of the Creen's functions, or response functions, which describe the
propagation of arbitrary izfinitesimal nerturbations of the system, Care is

needed in order to define these functions in a consistent fashion for the




generalized fields. Consider first the scalar field, 7he Eulerian Green's

function may be defined Dy

Glx,tix',t') = 6ulx,t)/8f(x',t"),

(3.1)

A
Gix,tsx',t'} =0 (vt <t'),
where f(x,t) is an arbitrary source term added to the right-hand-side of

(2.9) and 6/68 denotes functional differentiation. It follows that
2.1 n .
(3/at - xvx)G(g,t;g',t') = -g(i,tit)02x6(§,t;§',t') (¢t > t'), (3.2)
G(x,t';x',t') = 63(§-§'), (3.3)
where 63(§f§') is the three-dimensional Dirac function.

The Green's function for the generalized field may be defined by

a(i,t!r;gf,t'lr') 6y(§,t]r)/6f(5',t'|r')
(3.4)

A
Glx,t]r;x',t'{r")

0 (r<r'),
where f(5,t|r) is an arbitrary source term added to the right-hand sidc of
(2.11). Eq. (3.4) is to be interpreted in the following way: The perturbation

in v propagates from (t',r') to (r',r') according to the equatiomns

aa(g.tlx" sx',t'r')/ot = - g(a.tlt)'ixa(ﬁ.t!r';5_'.t'ir'). (3.5)

Blx,tt et sxt t' 2') = 63(x-x"). (3.8)
Then [note (2.10)] it propagates from (r',r') to (r,r) according to

(3/3t - ‘Vi)g(f,tit;éf,:'Ir') = -g‘ﬁ,tit)'vxé(ﬁ,t‘t;i',t'!r'). (3.7)
Finally, it propagate~ froe (r,r} to (t,r) according to

aa(g,t{t;i',t'lr')lat z -g(i,tjt)ggxé(i,tlr;5',t'Ir'). (3.8)

EqQ. (3.1) may be consicered a special case of (3.&):

A A
Gx,tsx",t') = 3(x,t{t;x",t'{t"). (3.9)
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Also,

Glx,zltsx’ k' |r') = Su(x,t)/66(x',t ir"),

e(g,tlr;);' ,ttit") 60(5,tlr)/6f(5'.t’). (3.10)
Consistency requires that f(x,t|r) be taken as a source term in (2.11) when
t #r and in (2.9) when t = r.

The generalized Green's function has the following physical significance.
Suppose thiat a perturbation is extermally imposed at time r' in the scalar
concentration at the fluid element which passes through point x' at time t'.
Then e(g,tir;g' ,t'|r') gives the resulting verturbation, at time-of-measurement
r, in the scalar conentration at the fluid element which passes through point
x at time v, TFig. 2 illustrates the way in which the perturbation propagates
in the (t,r) plane. Jote that there are no restrictions on the labeling times
t and t' but that propagation is always in the direction of increasing time

cf measurement (r 2 r').

The velocity-field Green's function tensor may be defined by

aij(z.tll‘;&.' ,t'rt) Gui(g,t'r)/ﬁfj(g_' ,ttirt),

(3.11)

eij(g,tir;;t_'.t'lr') 0 (rc<r').

Here f(x,t|r) is a force tarm added to the right-hand side of the equation
of motion for 2(5,t|r), if t # r, and to the right-hand side of the eguation
of motion for u(x,t) = g(g.,tlt) if t = r. The path of propagation of the
perturbation is the same as for the scalar case. In contrast to the scalar
case, the equation of motiom for the velocity‘field is nonlinear. Therefore,

A
f(g,tlr) must be taken as an infinitesimal if the result for G4 is to be

tde

independent of f.

Speciai consideration must be given tc incompressitility. In an in-

compressible fluid not all initial perturbations of the velocity field are




possible. If only the Eulerian field is considered, the restriction that

§f(x',t') be divergenceless can be imposed. However, u{x,tir) is not diver-
genceless in pencral. The possible disturbances Su(x' ,t'lr') are those which
propagate to the diagonal of tne (t,r) plane to give a divergenceless Eulerian
field, and this does not correspond to a simple restrictiom om §f(x',t'|r').
This situation may be handied correctlv by means of a formal artifice. Let a
fictitious curlfree part of the Eulerian field be admitted and write

u(x,tir) = gs(g,tir) + gc(g,t'r) (all t and r), (3.12)

where
Z'l:(gg,t{r) = 0, v ox gc(g.tir) = 0. (3.13)

Egs. (3.12) and (3.13) imply
S C
“i(i‘.'tlr) = Pij(g)uj(g,t[r), “i(’i’tl’) = nij(g)uj(g,tlr), (3.14)

where

Pij("v") = §,. - Hi (Y.)’ (3.15)

1]

(Yo 73

and, for any g(x),

2 3
my5(DE(x) = 3% /axax, Jo(x,y)e(y)dy. (3.16)

The integration in (3.16) extends over the whole vcolume occupied by the fluid.
D(_:g._g) has zero normal derivative on the boundaries and satisfies
2 3
VXB()‘(.Z) = 6 (!"Z)o (3.17)
Now replace (2.2) and (2.5) by
au(x,tlr)/at = —g_s(i,tlt)-gg(gg,tir), (3.18)
2. S S S
(373t = o )u (x,t|t) = -u"(x,t{t).vu (x,t{t) - 9p, (3.19)

0. (3.20)

auC(x,t|t)/at

Clearly in these equations the fictitious field g"(gg,tit) does not affect the

r
evolution of gs()_(,tlt) or the parts of gs(:_t,t(r) and u (x,t|r) induced by

S C e e e .
u(x,tjt). If u'(x,t}t) is initially zero, it stays zero. Therefore no
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violence has been done to the phvsics. However, (3.20) now defines the
propagation of "impossible" disturbances on the diagonal of the (t,r) plane,
so that the function eij(§,tir;§',t'fr') is well defined for arbitrary initial
perturbations. The "impossible” perturbations actually are of physical
interest. Their propagation provides a measure of the distortion, relative
to a Cartesian system, of a coordinate system wvhich mcves with the fluid. In
particular, the perturbation 62F(5,t'lt') induced bv a divergenceless force
égs(g,t'lr') provides such a measure.

it is convenient now to eliminate the pressure from the ecuations. +hen
there is no shear at the boundaries (e.g., boundaries at infinity) the elimi-
nation gives

Z )3 S S, ~
(3/et - ”Vl)“i(i’t‘t) : - 5-Pijm(Z)iuj(Q,t‘t)uﬂ(g,tit)], (3.21)

where

P (V) = P,..(V)3a/ax + P, (V)3/3x.. (3,22}
- ij ~ m i~ 3

iim
Note that (3.21) is equivalent to (3.19) and (3.20) together. This eguaticm
will be adopted hereafter. ¥ors general boundary conditions can be handled
by the methods of Ref. 3.

The equations for Gij can now be obtained by intrecducing force terms on
the right-hand sides of (3.18) and (3.21) and performing the functional

ditferentiation. Ths results are

ain(!‘.’t'i" ;.X_',t"t") = Gj_néa(ﬁ--’-‘-')’ (3.23)

A S A
3Gin(§.tfr;§'.t'lr')/3t = -um(g,tlt)acin(g,tir;g'.t'!r')/axm

AS
-G (titx et rdu (x,tir)/ax ,  (3.24)

R 2. _ S Ag . .
(s/3t - vi)Gin(ﬁ,t!tzgf.t'!r') = °9ijm(3x)[“n(5"'t)Gjn(i-tlt'i'o"|")],

(3.25)

[
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where

A

) ; ~
Gij(ﬁo‘lrii'-t"") = P, (Vx)ij(g,tlr;§',t’ir'). (3.28)

m -

9) = o) i .. cos
The property Pijm(*) Pimj(*) is used in writing (3.25).

%, STATISTICAL FURCTIONS
Consider a distribution of the fieids over statistical ensemble and
assume that the mean fields vanish for all argument values. The sicplest
statistical quantities are then the covariances
Y(x,tir;x',t'ir') = (v(:_g,tlr)v(gg' st irny,

Uij(l‘.’t";z‘: ,t'ir*) = <ui(i,t|r)uj(£' ,ittir )> . (8,1

which have the symmetry properties

Yix,tirsx',t'ir') = ¥(x',t'|r*;x,tlr),

~

U (§,t|r;§",t'|r') = Uji(g_",t'lr';}f,tlr). (8.2)

ij
Ensemble-averaged Green's functions may be defined by
A .
G(i,tlr;g ,ittrt) = <G(§_,t|r;§j ot Ir')>,

G,.’.(_)g,tlr;:;' ,t'irt) = <eij(5_,t|r;gt_' ,t! ‘r')). (4.3)

They satisfy
3 \
G(}_,t’|r';§',t'|r') = §7(x-x"'},

83 x=x"). (4.4)

' L ' ')y = §
Gij(i,t Irtsx',t'ir") i3

In correspondence to (3.14), Uii may be decormposed into the tensors Ji

]
oS¢ ’U-b UC, USS sC s . CC

. . .. .9 Usrsoe Moo .. ined
13° Yi3® Ti3® Tife Uige Ju' ul] defined by
S, tloext t'r') = v Teext ¢ {p?
Uij".‘""".‘. ot'irt) = Po( )Umj(ﬁ.tll‘,i st'ir'),

e
[T
“ods )
L anl
1%
L J
"
-
'y
1%
-
(ad
-
:.’,
~
"

. [}
Him(gx, )Uim(l,t irsx',t'ir'),




%

Sde )

{g,tir;g',t'ir’) = Ph(!x)njn(_‘zx.)Um(g,t!r;g_' ,t'ir'), etc. (4,5)

The notatlor used is that a superscript S or C refers to the index directly

beneath it. The corresponding decosposition of Gi* is

Gij(_g,tgr;gf gtirt) = Pi’(gx)fs&;{_:g,tfr;g' ,t'ir"),
2
c -
Gii(E,t{rgg',t'Qr') = Gin{l‘.vt‘“’.‘: ,t'?r')ﬂm.(_'ix,), etc. (4.6)

The foliowing sxample illustrates the use of (4.6). The vector
S H 1 gt RPN TRPRGP
fGié(g,t!r;i Wt r ) su x|t )d7x

gives the mean mponse(égs(g,tfrD of the shear field when the imposed
(statistically sharp) disturbance oroduces an initial perturbation Su(x',t'ir’}.

The wvector C 3
IGﬁ()_g,tir;gx_' St! Ir')ﬁu].(gc_' o' rt)a x!

gives the total respcase (ﬁ_{(g_,.}v)} to the compressive part ﬁuc(g',t'!r’)
of the initial perturbation.

¥hen the ensemble is homogeneous, the covariances and averased Green's
functions depend on the arguments x and x' only in the combination x-x'. In
this case the wavevector functions

(21)-3f7(a_c.t frsxt,t' e je ik*(x-x! )d(g-a_t_' ),

*ktirst'|r')

-ik (x-x')

6(kstirstt fr") ]G(g_,t!r;g'i,t' Ir*)e di{x-x"),

U -ik*{x-x')

(k3tirsttir')

isik (2')-3]Uij(§_,tlr;§' ,st'irt)e d(x-x*),

-. . - ?
fGij(g.tIr;y,t'lr')e ke (x-x )d(i-g_') (4.7)

G.

i (kstirsetir")

Sde

form a natural des<ription. The normalization chosen gives
1 g3 | t it
I?(k;tlr;t frt)a’x = Y(x,tir;x,t*ir'),

Iuij(g;tlr;t'!r' yadk = uﬁ(g_g,t!r;g.t'ir') (%.8)




and

Gltir'setirt) = 1 Gij(K;t'!r';t'lr') = 5. (4.9)

¥hen the distribution has reflectional symmetrv, the functions are
invariant to interchange of x and x'. Then it follows that

SC _ ,CS _ SC _ .CS _
uij = Jij =0, Gy = 64 = 0, (4,10)
for all argument vaiues. In a homogeneous distribution with reflecticnal

syrmetry, the decomposition of uii is completely describec by

Uij(g;tir;t'lr') Pim(k)Unj(g;t!r;t'ir'),

-

< . ot lnty = 1w . cptint 1
uij(g,tlr,. Ir*) "im(k)Umj(g,t!r,t irt), (4.11)
where 2
= - n - -
Pij(t) = éij nij(k), i].Qg) kikjk . (u,12)

The decomposition of Gij is similar,

5. DIRLCT-INTERACTION ZQUATIGHS: SCALAR Fitly

Assume that the fields are normallv distributed at an initial time to,
with zeroc means and zerc correlation between scalar and velocity fields. Then
the initjia. distribution is comoletely specified by ?(ﬁ,tolto;if,tolto) and

Uij(g,talto;if,tolto). Assume that the m-an fields stay zero for all times.

The relations in Sec. 3 lead to the equations of motion

(3/3t - KVi)?({,tlt;ﬁ',t'lr') z S(g,tit;i',t'|r'), (5.1)
(373t - <Vi G(x,tltsx',t' ) = dlx,tlt;x',t' e, (5.2)
¥(x,tlryx', ttirr/at = S(g,tir;g},t'ir'), (s.3)
3G(5,t|r;§j,t'|r')/3t z n(i,tlr;g',t'lr'), (5.4)




S(x,cir;x',ttir') = ~{ulx,t|t)-¥ Mxﬂﬂ“ﬂﬁlwﬁ (5.5)

A
H(x,t|r;x’,t*|r) -(g(g,tlt)ﬁgxc(g.tlr;gf,t'ir’)). (5.6)

The direct-interaction procedure yields approximations for S and H in
tems of ¥, G, and U‘j and thereby produces a closed set of equations. The
method has been described for Eulerian fields in sevearai papers.2’3’5’6
Extension to the generalized fields can be made straightforwardlv by using
the formalism developed ip the preceding Sections., The simplest way to con-
struct the approximation is an algerithm based on iteration expansion of S
and H, Consider the zeroth-order equations obtained by setting equal to zereo

the right-hand sides of (2.9), (2.11), (3.2), (3.5}, (3.7), and (3.8). The

solutions of these equatioms are

S0, tlrsxt 11 rt) = [aax(r-r') 1" 2expl-1x-x" | /4x(r-r")],
W x,tle) = [6x,tirsx toltgdelxt r fr)a% (5.7)

3(0) g(0) _ -(0) (0)

displays no statistical fluctuatiom (G ). Since ¥ (5,t|r)

is a linear functional of the iritial field, it is normally distributed. ANote

A(0) (0)

that G (§,t|r;§j,t'lr') and ¥ (5,t!r) have values independent of the

labeling times t and t'. The similar procedure for the velocity field, setting
the rigat-hand sides of (3.21), (3.24), and (3.25) equal to zero, gives

A(0)

ij (x,tlr x',t! ir') = 5 [3'V(r-r')] exp[-lgfgflzlﬂv(r—r‘)].

(0) !A(O)

(x.tlr) (x, tir; x',t e Ju.(x*,t |t )d3x'. (5.8)
0’ 5'2 %'t

A A
Formally exact expansions of G, ¥, Gij’ and u as functional power series

in the zeroth-onder functions can now bec generated by introducing the actual

right-hand sides of the equations of motion as perturbations and iterating.
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These series may be substituted into (5.5) and (5.6) and the averages evalu-
ated by the rule for moments of a normal distribution. The results are in-

(0) (0)
finite functional power series which express S and d in terms of C

®13
Y(O), and U§?). Clearly only pury Lulerian velocity functions appear in the

results since only the Eulerian velocity enters the equations of motion for
vix,t|r)
Tne lowest-.rder terms in the series for S and H are respectively linear
iy . (0) . ~(0) . . .
and bilipear in G 3 they do not involve 5 - The direct-interaction

approximation is constructed by retaining only the lowest-order terws and, in

them, replacing all zeroth-order functions by actual functions. This yields

S{x,t|r;xf,t'{r') =

r
5 s|s) ¥
Ja¥] as U;sxotlesy,sls) —(-iﬁkﬂ’ s) 2¥(x',t ;!]‘ ilpsls)
t - 1
0

t
aG . Y J . .
#{d3yf ds Uij(g.t‘t;g,SlS) (gztli:xzslr) av(x' t é; yasir)
r i b

f]d3y[ ds Uij(f’titiZ’slS)G(ﬁf't'|r'{¥'s‘5)

N

32V( tir;y7,51s)
x,dy.
i3

2
fyme [
+Id3vf 4s U, . (x,t]t;y,s!s)C(x’,t'Ir';y,sir") 3 ¥(x,tiriy,sir’) . (5.9)

i rt 1) -~ - - - 3X:3']i

d(ﬁ,tfr;g',t'[r') =

]
G v, '
Id3YI as U, (x,tltsy,sls) 28 t[r,y,slr ) 3G(v, sl;lé ,t'ir')

t' j l ]

3G(§,t|r,y,s|s) Bu(L,SIS,}L,t Ir*)
xi dy(

r
¢fd3yf ds Uij(i,tlt;y,sls)
r' -

t | an
o] ds U, (x,tlt;y,sls) 3C(xyt r3v,sir) (Lls'r’«’wt tir') (5.10)
r T - Bxi ¥




Fig. 3 helps in understanding (5.9} and (5.10). The first twc terms
on the right-hand side of (5.9) arise from the iteration expansion of the
¥(x,t|r) factor in (5.5). The first term is associated with the evolution
from (to,to) to (r,r) along the diagonal in Fig. 32 and the second term with
the evolution along the vertical from (r,r) teo (t,r). The final two terms in
{5.9) arise from the i(g',t'|r') factor in (5.5). The first term on the right-
hand side of (5.10) is associated with propagation of the imposec perturiation
along the vertical from (t',r') to (r',r') in Fig. 3b, the second temm is
associated with diagonal propagation from (r',r') to (r,r), and the third
ters vith vertical propagation from {r,r) to (t,r).

For further clarification, the derivation of (5.19) will now be traced
in wmore detail. An exact exvression for the factor g(i,tir;gj,t'ir') in

(5.6) is

A
S{x,tir;x',t'|r') =

r' 2 LI ] ] ]
- [day[ ds G(o)(g,tlr;y,slr')uj(y,s}s) 3G(y’slra;§F’t ')
'] - - Y.

t B

3G(v,sls;x',t'|r')
2 a2t
3v .
3

(0)(£,tEr;!,sls)uj(z,sfs)

jof
- [&%y] esc
t'

t Q o ? ? L
- !day[ ds G(O)(x,tir;y,sir)u.(v,sls) 3(y,s|rja',t’ ir') . (5.11)
r - e 1= 3y_.|
This follows ismediately from the equations of motion and the definitiom of
G(o). The lowest-order iteration contribution to H is cobtained bv replacing
(0)

u(x,ti{t) with u  (x,t{t) in (5.6), replacing the quantities on the right-
hand side of (5.11) with zeroth-order quantities, inserting this result in
(5.6), and averaging. Changinr all zeroth-orcer guantities to actual gquantities

in this result then gives (5.10).




-17-

Equations (5.1)-(5.4), (5.9), (5.10), (%.2), and (4.4) are a complete
set which determine ¥(x,tir;x',t'|r’) anc Gix,tlr;x',t'|r') for all argument
values when the initial function Y(§,toito;§',tolto) is specified and the
Eulerian velocity ccvariance Uij(§,tlt;§f,t'lt') is known for all argument
values. Setting t = r ana t' = r' in these eguations gives a reduced set,
containing only Lulerian guantities, which is identical with the Eulerian
direct-interaction equations previously obtained6 for the scalar field.

The direct-interaction equations mav be characterized in two ways. First,
the approximations for S and H represent the summation, to all orders, of
certain well-defined infinite _ubclasses of terms from the formallv exact
iteration expansions. Second, the final statistical equations are exact
statistical equations for a model dynamical syster which has some important
properties in coomon with the actual svsterm. These zatters have been exvlored
in detail in the pure Zulerian case.6

The exact statistical gquantities satisfy

it
[

fG(i,tlr;i',t'!r')dax (5.12)

fs(g,t‘r;§,t|r)d3x = 3, (5.13)

fer t =, t' = r', (5.12) states tnhat an initially introcucec cuantity of

scalar fielc sudstance is conserved oy both ccnvection and molecular diffusicen.

for t # ry, t' # 1r', it states that tue total cuantitv of scalar substance is

inderencent of whether the fiela is describec in Lulerien or Lagrangian

cocrcinates. (Cf, (2.7).) <Zg. (5.13) excresses conservation of
[x,t10)]%e

pv the convection drocess anc alsc imolies

) .
T fY(§,t§r;5,tir)a3x = 9, (5.14)
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which sta®»s that the mean-square quantity of scalar substance is indepencent
of whett2r adescription is in rulerian or Lagrangian coordinates. An additional
exact property is that when « = O the functioms ¥(x,t[r;x',t'|r') and
G(x,t|r;x*,t'|r') are independent of r and r'. This is because the scalar
concentration is constant along the particle paths.

All the above coanservation and invariance properties survive exactly
in the direct-interaction equatices. tas. (5.12) and (5.13) mav be verified
by integrating (5.9) and (5.10) over space, transforming the results by
partial integration, and noting that the Uii factors are solenoidal in i.
The independence upon r and r' when «x = 0 may be verified as follows. If
all the quantities on the right-hand sides of (5.9) ana (5.10) are independent
of the measuring times (the times following the vertical bars), then S and i
are independent of r and r'. If so, ana « = 0, (5.1) and (5.2) five identical
changes of the functions along the diagoral of the (t,r) plane and varallel
to the t axis. Therefore the change parallel to the r axis is zero, and no
dependence on measuring time is generated by the eguations. Tfollowing this
argument in furthier detail demonstrates the complete r and r' independence.

A further property of the exact statistical eguations which survives in
the direct-interaction approximation is the existence cf equipartition equili-
brium solutions in the case x = 0. If ¥ is appropriately normalized, these

solutions satisfy

G(i,th‘;i',t'!r') G(!,tlt;i',t'!t'),

]

!(E,tlr;gf,t'lr') G(g,tlr;;'.t'ir'), (5.15)
when r 2 r'. Theeuipartition solutions can be inferred for the exact

equations from the existence of Licuville and fiuctuation-dissipation theorexs
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(see Appendix). NXNo conaition on the velocity field other than incomp.essibility
and vanishing normal coweponent on the boundaries is implied. The equinartition
sclution is physically unrealizable, but it is important because it expresses
the tendency of the convection to produce ever-sharper gradients of tne
scalar field. If complete equilibrium were ever achieved, than, accoerding to
{5.15) and (4,4),
r(x,t]t;x',tit) = 53(_:5-5'), (5.186)

which indicates zero correlation length of the scaiar fielc,

The compatibility of (5.15) with the direct-interacticn eguations whern
« = 0 may be demonstrated by using (5.15) to replace all ¥ functions with
G functioms in (5.1)-(5.4), (5.9), and (5.130), using (4.2) when needed. If
noWw a partial integrat%on over y is performed on the third and fourth terwms

on the right-hand side cf (5,9), using the fact that the Ui. factors are

4

solenoidal in 3, then it is easily seen that cancellations occur in such
fasiiion as to make (5.1)-(5.4) identical equatioms for G(},tit;i’,t'it').

All the abuve consistency rToperties cf the direct-interaction eguations
can be predicted from the existence of a rodel representation of the aoproxi-
mation. A final important property implied by the existence of the model
representation is that the covariance ¥(x,t|r;x',t'|r') oredicted by the
direct-interactioc equations is realizable as the average cver some possivle

ensecble of fields and therefore satisfies all the realizability inequalities

which a covariance cust.,
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6. LHDI EQUATIONS: SCALAR FIELD
Suppose for now that the spatial domain is infinite and the fields are
statistically homogeneous. Consider the function

S{x,tit;x',t]t) =

t , ‘
!dayf ds U:j(ﬁot!t;Y.SIS) 5%— [G(i,tit;y,S‘S) ”(L%it,y,sls)
t -» - i 'z .:E
o r

+ Slx',tlty,sls) 3Y(§,§lt;y,s|s) ] (6.1)

3

given by (5.9). The Fourier transform of (6.1) with respect to x-x' vields
the direct-interaction approximation for the transfer of mean-square scalar
substance betwe.n the wavevector modes of the scalar field. The integration
over s in £{6.1) expresses relaxation and memory effects in the turbulent
flow. Clearly the magnitude of the integrals is dependent on the Culerian
correlation times of the velocity and scalar fields. These correlation times
play the role of effective times for remembering contributions to the transfer
function from dynamical interactions during the past historv of the fluid.
The appearance of the Zulerian correlaticn times in (6.1) gives rise to
a serious flaw of the direct-interaction approximation in tne description of
convection effects, The trouble, which is discussed in detail in an earlier
paper,1 can be stated as 2 failure of the direct-interaction asproximation to
oreserve the invariance properties of the exact equations under a random
Galilean traasformation. Supoose that u(x,t) is augmented by an addition v
which is constant in space and time, statistically indeoendent of u(x,t) at
any instant, and Gaussianly distributed. This means that the svstems in the
ensemble are subjected to uniform translations that differ randomly from

syster to system. The translations do not affect the rate of transfer of




5
§
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scalar substance amonf, the wavevector modes in any of the systems of the
ensemtle, anc therefore it is clear that S(§.t|t;§',t§t) must be invariant
under the ranagom Galilean transformation. But (£.1) is not invariant, because
the tulerian correlation times are nct invariant. The latter deocend on how
fast the velocity v sweeps the fluctuations in the v fieid past fixed ob-
servation pcints in space,

The following guestion may be posed: Is it possible to alter the
direct-interaction equations sc as to incoroorate invariance under randce
Calilean transformation, without civing uo any of the conservation, invariance,
and equilibriur properties exhibitec in Sec. 5? Investigation has so far
inagicated that the objective can be 3chieved onlvy in part. There appears to
be a unique prescription for altering the direct-interaction formulas for S
and 1 so that: a) The conservation, invariance, and equilibrium properties
of Sec., 5 are all preserved. b) Exact invariance to random Galilean trans-
formation is realized in the case x = 9, <) when the velocity field con-
sists wholly of a Gaussianly distributec uniform velocity v, the results for
v(l,tlr;§f,t'|r') and G(i,tlr;gf,t'lr') are exactlv correct, without restriction
on <, The prescription is:

(1) Hrite Uij(g,titiz,sls) in (5.9) and (5.10) as Ui§(§,t|t;g,sfs) 1)

as to exhibit explicitly the fact that it is solenoidal in j.

(2) Then, evervwhere ou the right-hand sides of (5.9) and (5.10),

change each labeling time s to a t. (The labeling times are the time

arguments which precede the vertical bars.)
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Eq. {6.1) is now replaced by

S(x,tit;x',t|t) =

ds |

[o® yf v, (x.tit,y,tts) [G(x tltsy,tls) 3Jit;;,y.t s)
<t 1 ]

0

+ G(x',tltsy,tls) a'(ﬁlt%;”’t!s”}- (6.2)

B
The s integration in (6.2) is over Lagrangian histories, and it is now the
Lagrangian correlation times which determine now the transfer function

remembers past dynamical events. More generally, application of the pre-

scription to (5.9) and (5.10) gives

S(ﬁ,tlt;&',t'lr') =

r . i
= 36 . jy a¥ix' t'lp?. }
(%) as U S(x,t]tsy,tls) 28 tg”!’t's’ Wix'yttirtsy,els)
1] = - x. Y3
to 1

t
e ey !'.t'! '-i t S
* 5;.-[ ( :. L{)— I Uij(EQtlt;th‘S)dsJ
1 ] r
'

r 2
P : 5
+!d3y] ds Uig(g,tlt;l,tls)c(i',t'Ir';z,tls) { aﬂry‘ tls)
173

%
3, S 327( tir;y,tir')
’!d yj ds Ui-(xat't;y.t’S)G(g'.t"P';y,t!r') %! D AT . (6.3)
' 1= = = x.2v,
r %75
H(x,t|r;x',t"jr") =
r'
fa¥y] as v S(x tltsy,tls) 3G(x,trsy,tir') 36(y,tlr';x',tt {r")
y o i3 %o Y 3)( av]

ofd yf ds U (x tlt,y,tls) QG(A,t!r,y,tjs) 3G(y,tis;a',t'[r")

Ix, v,
r' i

3
J

+ [-“—(l‘—bm——f U, (x Jtlts x.tl%)ds] {6.4)

X
i
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In the secona term on the right-hana side of (6.3} and the third tersm on the
right-ha:.d side of (6.4}, the v in*egrotion @ as been performed by using (4.4)
and the fact that the factor Ui?(g,tlt;z.t!s) is solenoidal in i. cas. (6.3)
and (6.4) wiil be called the LiDI {(Lagrangian-historv direct-interaction)
approximation hereafter,

The invariance of the LnJl equations to random Galilean transformations
will be discussed in a moment. First, it is 2asy to see that the conservation,
invariance, and equilibrium properties noted in Sec., 5 all survive. For the
unaltered direct-interaction equations, these properties depend upon tne
cancellation or identity of particular integrals in the expressions for S and
n. The alteration does not change the limits of the integrals, and identical
integrands are subjected to iaentical changes. Thus the demonstration of all
the properties goes through for the LiDI equations just as befere. It is im-
portant to note that if rule (1) of the alteration prescription were not im-
posec tne equilibrium property would not survive. This oroperty requires that
the veiocity covariances which appear be solenoidal in j, ang Uii(i’t!ti!’tIS)
need not be solenoical in j fer s # t.

The Galilean transformation properties are conveniently investigated by
writing the equatiomns in the wave-vector domain, usiny (4.7}, £Zgs. (5.1})=(5.4),

(6.3), anc. (6,4) are replaced by

(3j3t + xkz)?(i_(_;tit;t'!r') = s(kstitst' e, (6.5)
(372t + xkD3atkgtlt et et) = algeieet e, (6.6)
3?(§;ttr;t'ir')13t = S(};t{r;t'lr'), (6.7)
BG(E;tir;t'lr')/Bt = n(z;tir;t'ir'), (6.8)

and
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Stkitirsttfr') =

r
-klkj qJ ds U, f (q;tir t{s)c(p;tir;tls)?(k;tﬁr';tls}
P o~ ~ -
0

t
-kikjv(t;t'Ir';tir)fdaq] ds Uif(q;t!t;tfs)
r T

r
#kikaa qj ds Uii(i;tlt;tfs)c(t;t'Ir';t!s)f{g;tir;t!s)

P
s b
k. k. f as U.?(q;tit;t!s)G(k;t'Ir';t{r')?(p;tlr;tlr’), (€.9)
b by T RS S = =

dlk; tlr st! lr ) =

'

-k k. 2 I ds U, S(

spaal 132 q;tle; tls)P(p,tfr;tir olkstirt;erlrr)

1799

r
-kik.fg q[ ds Uii(q;tlt;tIS)G(p;tlr;tls)G(g;tls;t'3r')

t
-kiij(E;t!r;t'lr')fdsq] ds Uii(gﬁt!t;t!s). (6.12)
r

In these equations the operator notation

{: q z ]dapd3q63(§-p-q) (6.11)
. 27

and the solenoidal oroperties of Ui? are used.
Suppcse that the random unifors velocity v is statistically isotropic.
(This is an inessential restricticn.) Then the exact effects of the random

translation on G and Y are expressed by

[G(g;tlr;t'ir'}]v z exp[- %- gkz(t-t A Re{§ FRIPSTIRPL ) 1gs
oloeve 1 2.2 .
[Y(E;tlr;t Ir )i, = exp[- T VoK tt-t') }L?(k stirget|r ) (6.12)
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whare 3 is the rms value of any vector component of v, { ]c denotes a value

#ith v absent, and [ ]v denotes a value with v present. Eq. (6.17) follows
from the Gaussian distribution of v and the fact that, according to (2.9)-
(2.11), the scalar Fourier coefficients in the individual systems of the

ensemble transform according to

felk,tir)] = ew[-ix-f_(t-to)](az(f_,t!r)]o. (6.13)
(Cf. Ref, 1.)
© o {6.5)-(6.8) and (6.12) imply that S and H transform according to

1

2.2
expl- E'Vok

[S(’}tlr;t'lr')]v (t-t')2]([5(5;t|r;t'lr')lo
- vgkz(t-t')[?(g;t!r;t'lr')]o},

2

[d(h;tlr;t'ir')]v exo{ - %-vgk (t-t’)zl{[ﬂig;tlr;t'!r')]O

- v;kz(t-t')[G(t;tir;t'lr')]o}. (6.14)

The effect of the transformation upon the velocity covariance itself is

[Uii(i;tlr;t’lr’)]v = 6ij63(g)v§ + expl- %-vgkz(t-t')Zliuii(gftgr;t’lr')]o.
(6.15)

Now take x = 0, Then the LHDI equations yield Y(i,tlr;i',t'|r') and

G(§,tlr;§',t'lr') values wrich are independent of r and r', in agreement with

the exact functions. Using this fact (noted above), it is verifiable by direct

evaluation that the substitution of (6.12) and (5.15) into (6.9) and (6.10)

gives (6.14). This demonstrates the desired Galilean invariance prooerty.

It is important to remark that this result would not be cbtained if anv or

all of the labeling times s were changed to any value other than t, in forming

the LHDI equations.
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Next take « > 0 and let the velocity field consist solely of a random

unifoare field:

3

S..tlo- 2
Uij(g,tlr,t ir?) = 6ij6 (Q)v,- (6.16)

Direct solution of the equations of motion in Secs. 2 and 3 then yields the

exact valiues

*(kstir;e'|r') = expl- %-vgkz(t-t')z - :kz(r+r')]Y(E;toito;tolto).
G(E;tlr;t'[r') = expl- %-vgkz(t-t')2 - xkz(r-r')] (r 2 r'). (6.17)

Direct evaluation shows that the values (6.16) and (6.17) are also exact
solutions of the LhDI equations (f .)-(6.10).

In the case of a general isotrooic, homogeneous, and statistically
stationary velocity field, a Peclet number B may be defined by

B = vol/r, (6.18)

where Y5 is now the total rms value of any vector component of velocity and
t is an approoriate correlation scale-length for the velocity field, sav the
integral scale.7 In the cases of uniform translation treated above, the
correlatioe scale is infinite and so, therefore is b. when 5 << 1, the
turbulent convection represents a small perturbation on the molecular diffusion
process, and the ELulerian and Lagrangian histories of the scalar field differ
inappreciably. In this case the unaltered direct-interaction and LHDI
approximations give nearly the same results. A formal statement of this fact
can be made by noting that the iteration expansion discussed in Sec. 5 is
actually an expansion in powers of b.a The exact functions S and H are then
power-series in 8, with the lowest-order terms linear in B. If the direct-

interaction and LiDI vclues for S and H are expanded in powers of B, the terms

linear in B agree with the exact expansion. In the higher powers, the two
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approximations differ from each other and from the exact expansion., In the
asymptotic situation of convection by a random uniform velocitv, treated
above, the LhDI values agree with the exact expansion to all orders, while
the unaltered direct-interaction values give the higher orders with rapidly
deteriorating accuracy. (See Ref, 8)

It should be stressed that one consistency propertv of the direct-
interaction equations has not peen shown to survive in the LHDI equations.
No model representation sc far has been found for the latter, and coasequently
it cannot be asserted that the function ¥(x,t{r;x',t’|r') they predict is

a realizable covariance. This matter will be discussed in the next Section.

7. EXAMPLES OF THE SCALAR LQUATIONS

Sec. 6 contained a demonstration that the LHDI equations vield exactly
correct ¥ and G values fcr convection by a Gaussianly distributed uniform
and constant velocity field. This is a nontrivial success. The unaltered
direct-interaction equations predict a peculiar wave-front behavior for
G(x,t{t;x',t"'|{t") in the same situation, while cumulant-discard approximations

.8 The success

or truncatiops of the iteration expansion lead to disaster.S
here gives a degree of redssurancz concerning the absence of . demonstrated
model representation for the LHDI equations. The question of model representa-
tion has assumed importance because the cunulant=discard aoproximations,
truncations of the perturbation expansion, and certain higher ianfinite partial
surmatiors of the perturpation expansion, all of which have no wodel

representations, have been found to lead to grossly unphvsical behavior.

. X . . 39
This has taken the form of negative wave-vector spectra in the scalar problem
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and in Navier-Stokes turbulence dynauics.le With each of these approximatioms,
the unphysical behavior is apparent in the problem of convection by a random
unifore velocity field.s’s

It has been noted that G and ¥ are independent of the measuring times
when x = 0, In this case the G equation given by (5.2) and {6.4) reduces to

Ix, i_

3 Glxutint o) = 2o (20U (T s
T{G(E.tgg'.t ) - -_1 ax. ft'uij(.x_’tlt,i’t‘s)ds}’

G(x,t':X',t') = 63(5-5'). (7.1)
where G(x,t;x‘,t') is written for G(i,tlt;gj,t'lt') and (4.4) has been used.

1f U.? bhas the isotropic homogeneocus form

13

S
Uij(g,tlr;g,tis) = 6ijU(t|r;t,s). (7.2)

then (7.1) has the immediate solution

S(x,tix',t"°) = [2'01(t,t')]-3/22Xp[°l§r§'|2/201(t,t')], (7.3)
where t s
o (t,t') = 2] asf ar u(sls;sir). (7.4)
LS 4

Eq. (7.4) yields
(x-x"1%) = 30, (t,t'). (7.5)

These results may be compared with exact formulas obtained by the method

11,5

of Taylor, The displacement of a particle from x' to x in the interval

from t' to t is, by definitiom,
t

x-x' = | ulx,t]s)ds.
e
tience,
(Ix-x'12> = 3o5(t,t'), (7.8)
vhere t ot
o(t,t?') = [ arf ds u(tls;tir). (7.7)

t! t'
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I1f the statistical dependence ameong the values of g(g,tls) has an eflectively
finite range in t-s, then a central-limit argument implies that for very large
t-t' the function G is Gaussian; that .s, G 1s given bv (7.3) with ol replaced

bv 6. On the other hand, P.obertsS has found that for very small t-t' the
function G is again Gaussianl.'2 Supocse now tnat the turbulence is statistically
stationary. Since 3(§,t|s) and g(g,tir) are reasurec along the same particle
path, it follows from the stationarity and homogeneity that U(t!s;tlr} can
depeni oanly on is-r|. Then U(tls;tir) = U(s‘s;slr) and o(t,t') = ol(t,t').

In this case the LdDI result for G(x,t;x',t') is asyrmototically exact for
very -a1all and very large t-t', while the result for (|§-§'l2> is exact for
all t-t'.

The spectral transfer equation yielded tv (6.5) and (6.9) is

t
. A S
(3/2t + 2<k2)?(k;t§t;tlt) = 2k.k.{ ] u..(q;t!t;tls)ds
-~ 1 37P.9", 33 -
- \O

x (o(kstitseis)¥ipstitstls) - Glpseitstisivikstitsels)l. (7.8)
4hen « = O, the G and Y functions are independent of labelins times, and (7.8)

takes the simple form

t [ 24
3¥(k;t) /3t = Qkik422 q[?(p;t) - ;0 uij(q;tit;tés)ds, (7.9)
.‘_‘._Q' - - t . -
0

wnere ¥(k;t) = ¥(k;tit;tit) and (4.4) is used. The x-space ecuivalent of

(7.3),0btained from (6.2) specialized to the homogenecus case, is

2 t
34 (x-x',t) .
axiaxi [ 5, (x-x";tlt;tls)as, (7.12)

)
— f{x-x',t) = 53
-J

3t
%o

where

w

Bij(gfgf;tit;tls) = 2[Ji§(§,t3t;5,t!s) - Ui.(§,tit;§f,tis)] (7.11]
4

w4

and Y(x-z',t) = Y(x,tit;x',t,t). #hen the turbulence Iis statisticallv
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stationary as well as homogeneocus.
S S,
Uij(5.t|t;§,tlt) = bij(ﬁ stlsixt,tls),

in accord with a remark made above. In this case, Bii is the variance tensor

of the velocity difference u(x,t|t) - u(x’,t|s).

8. LHDI EQUATIONS: VELOCITY FIELD

The direct~interaction avproximation and Lagrangiar-history alteratioo
go through for the velocity field in close analogy te - : scalar case. The
analysis in this Section will be restricted to reflect.cn-invariant homo-
geneous turbulence., More general flows, with nonzero mean fields, can be
treated with the methods of Ref, 3. Assuxme that at time t the homogenecus
Eulerian field is Gaussianly distributed and divergenceless., Then the
different Fourier components are statisticallv independent and the initial
distribution is fully specified by the functiom Ui§(£;t0’to;toitc). The

exact statistical equations are

(aza3t + vk2)Uin(§;tit;‘c'|r') z Sin(_l_(_;tlt;t'lr'), (8.1)
(3/3t + vk2)GinQ(_;t|t;t'|r') = Hin(g;t!t;:'lr'). (8.2)
3Uin(!(_;tir;t'lr')/3t 2 nin(g;tir;t'ir'), (8.3)
BGin(g;tlr:t'lr')IQt = Hin(g;t!r;t‘lr'), (8.4)

where S, , H. , 4. , and N._ are the Fourier transforms, with respect to x-x',
in® in® "in in

of

S
Sin(_)s.tlt;i' yst'ir!) = - % Pijm(!x)<u§(§,tit)u.(§.tlt)un(gg',t'|r')>. (8.5)
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[¥2]

AC
3 tinmt) - _© (2 MuTix 22307 fxt't-xt ! ,\\, ~ s
;'éin‘.: tit E WTiet) -ijn\;_xl\um\cgt-\)ujn\l'\, Tl 21T )7 {Z.0)
¢ S i 1 -
M n(§,ttr;§',t'lr') = °<um(§’tit)“n(§"t'!r')a“i(i’t‘r)/°x2>- (6.7)
S A ‘
Nln(f,tlr;gj.t'ﬂr') z -gpm(i,tit)ocin(§,t3r;5',t'3r')/3xm>> r
ﬁs ! t : ’
-(G (x,tityx’,t'ir')du (x,tir) '3x_). (8.8)
©n - ~ i~ o

The direct-interaction avproximations for Sin’ Ay qin” and K. are
formed by the same rules as in the scalar case: Iteration exoansioas for
these uantities are constructed as functional power series in the zeroth-
order covariances and Green's functions. The latter satisfy the zercth-
order egquations formed by discarding the right-hanc sices of (3.18), (3.21),
(3.24), ana (5.25). Then the leacins terms only are retained in the exsansions,
and, in them, all zeroth-order guantities are repiacad by actual cuantities. >
The prescription for obtaining the L#DI approxizations for the veleccity
field is simply:
On the right-hand sides of the direct-interactiocn expressions for Sin’
H, , ¥. , and Hin change everv labeling tize s to a t.
A rule like rule (1) of Sec. 6 is not needed here because the reguirec S
superscripts are automati:ally suoolied as a result of writing the equations
of motion in the formc (3.18) and (3.21).
The final results for the !4DI avorexiraticns tc Sin’ H, xin’ and 5, are

Sin(g;t!t;t'ir')

. t o -
- Yu Gb - .t% QDS 1 ! .:‘ XAl ' .
Pijm(t)"p,qPoca(f)!t ds jb(:,tit, sV (3t t3ets)U T (ksttirtstls)
-7 0
r' S 33 .
5 <SS ) . )
+ %'Pi4m(£)Pabc(E)Xp,q{ ds G (F,t'."’t;S)U};(E,I!t;t‘S)Jmc(i;tIt;t!S)
LAt R
t! -
.. oY r Gs (k,t' ritle)lY (patlest e )J (1:tlt tis), (8.9)
1m »q 3’ _, ibL
1 q &’ b
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H, (k-t|t;t'|r') =

P} 5nlk) 2 'q] 'ds sib pititseir )u (i;tit;t!s.acbn()i;tlr';z'.r*s
t

()2

t
. SS S
Peg b (p)f 'asC§b§2;tlt;t|s)U;c&g;tlt;tis)Gan(b;t!s;t'lr')
r

A
i (k){p o%a

-P f ds ujb(p,tlt tlr')t, (q,tlt st )o (ks stls;ttie),

t
3 . S . S
!in(i;t|r;t'!r')=—kn[ch qU‘i(Sﬁtlt;tlr)frds dnc(§;t'|r';t|s)

(p)[ ds G, (p,tlr tls)U (q,tlt t‘s)U (k t'|rtstls)

%

-2 n bca

t
3 (. ss
ot | I - -
- U kst Ir ,tir)kckm[d quas Um(i,tlt,tls)
'

i‘bc(»)): pf ds G__(k;t' Ir',tls)u (p,tir stls)us (q,tlt ;tls)
%o

)
“Yz.qpnpcsm(sjt'|"‘t‘r')Uia(ﬁ“"‘ﬂ!f")fz'ds uiz(g;tlt;tls)
t'
’i:.o}’chfr,ds Gna(.’f.it'"'3t|P')Uii(g;t|r;tls)uia(g_;tlt;tlr')
a t S 5 c
.{p.qx>ml’“b(fq~)]t ds Gm(g_;tlt;ﬂs)()ib(g;t‘r;tls)una(i;tv|r';t's)’
- 0

Nin(g;t‘r;t'|r') =

a
Iy PakcCiatpitimitle e ks tlr',t'lr')ft ds Uo(gstlesels)

A
-Ep’qpch”lagg,t'r;tlr )U (q,tit,t|r')ft'ds G (k t]s st r)

s
-{p.q o bca(f)j ds 6, (pitlrstis)uSgstlselsicd (kselssetr)

(8.10)

(8.11)
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t
3 SS
,kmkccin(g;tlr;t'{rv)fd quds Umc(g;tlt;t!s)

c 3. t s
-k fe 1 qui(gﬁtlt;tlr)Irds Gcn’;;tls;t'lr')

A
-20 me c ma(i.t|t tir )G, (k; stirtstt|p? )[t ds U, (o stirstls)

r
- 3 S . . AYS . . ' oS . ep it
Ep,qpmpccma(iftlt’tlr )bia(g,tlr,tlr )f ds ucn(t,tls,t ir')

t'
A t S S
Xp qme (f ds Gmc(q;tlt;t!s)uib pitir; tls)C (E;tis;t'lr'), (8.12)
2 - r - -
where
P.. (k) = k_P,..(k) ¢+ k.P, (k). (8.13)
ijm = mij - itim -

The paths of evolution and provagation involved in these equations are
indicated in Fig. 4. The soclenoidal properties anc (4.9) have been used inu

writing some of the terms.

(8.1)-(8.4), (8.9)-{8.12), and (u,9) form a complete set which

determine the full functions Uip(g;tfr;t’lr') and Gin(h;tlr;t'lr') from the

prescribed initial values Uip(h;t It itn). As in the scalar case, they

-t
2'°0%¢0

preserve impocrtant oroperties of the exact equations of mction: Conservation

ot energy by the nonlinear interaction; tne invariance property

3
5 v

3 s
;j(x,t!r;i tirld x = J; {8.14)

ana the existence of formal equipartition eguilibrium soluticns of the form
U, (kstlesetfet) = ;ij(k;:ir;t'ir'; (r 2r') (8.15)

in the case v = 0. A oroperty of the aprroximation which has no analog in
the scalar case is that the incomroressibility of the Zulerian velocity field

. C i . . . . .
is preservea: Uij(k;tlt;t'lr') vanishes tor alill argsument values if it is




-34-

zero for t = t' = pr' = tye
All of these consistency properties can be inferred for the unaltered
direct-interaction equations from the existence of a mocdel renresentation.,
As in the scalar case, theycan be verified for the LHDI approximation by
direct examination of the final statistical equations. The cancellations
of terms in (8.9)-(8.12) associated with the conservation, invariance, and
aquipartition properties can be demonstrated by using the solenoidal
property with respect to indices beneath S superscripts and noting the

geometrical relations

(). (8.18)

E =Ppta (k) = mij 2

Pta Pijm k iji(g) + P
The preservation of incompressibility can be verified by tracing the path
of evolution of Ulj(s;tit;t'lr') and Uji(g;tir;t'it’) and noting that the
presence of projection operators P or superscripts S in (8.9) and (8.11)
precludes the generation of any increments which are nonsolenoidal in 1i.
tq. (4.2) is needed in the demonstration, {Some of the S superscripts in
(8.3)-(8.12) are superfluous because of (4,10). They are retained in crder
to make it easier to trace the way in which the varicus terms arise from the
perturbation expansion.]

Equations ¢3.71) and (3.25) are not fully invariant to Galilean trans-
formation as they are written., To obtain invariance, the respective terms

'1‘17“2(355 [t - -Z'.Yxcgr,(z.t ltsx',t'fr") (8.17)

must be added to the right-hand sides, where v is the uniform translation
velocity. This is a forwmal device which insures that "impossible™ perturha-
tions (see Sec. 3) are transiated along with everything else. The added

terms make no change in the evolutiocn of gﬂ{,t{r) when the initial fulerian
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field is divergenceless. Wwith this change, it is easily verified that the
exact statistical functions transform as follows under the isotropic random
Galilean transformation considered in Sec. 6:

1

expl - TV 2

? 2 . - 1) ]
k‘(t-t') ][Uin(}_(_,tlr,t fr Mg (8.18)

- . 1] $
(uin(g,tlr,t |r ),

1 2.2 2 ,
expl - = vok (-t 16, (kitlrsttirn)] .

O N ON

(6, (kitlrstt|rD)], (8.19)

The notation here is the same as in Sec. €. A further transformation law is

[Sin(Ei?’iﬁt;t')]v = exp[ - %-v§k2(t-t')2](Sin(§;g,gﬁt;t')]0 (k,psq # 0),
(8.20)
where Sin(t;g.q;t;t') is defined by
s, (stlesetfen) = ii’qsin(iﬁg,i;t;t'). (8.21)

£q. (8.20), and similar transformation laws for other functions, actually is
implied by (8.18).

By analogy with Sec. 6 it might be expected that the velocity-field
L4DI equations exhibit invariance to random Galilean transfcrmation whenever
v = 0, This is not the case. Verification of Galilean invariance in Sec. 6
depended on the fact that the scalar statistical functions are independent of
measuring time when x = (0. Hcwever, variation of the velocity along the
particle paths arises from pressure as well as viscous forces. Consequently
Uin(g,t|r;§f,t'Ir') can vary with r and r' when v = 0. The velocity-field
LHDI equations exhibit exact Galilean invariance only under very restricted
circumstances: when v = 0 and the spatialily nonuniform part of the velocity
field is infinitesimal in comparison to Vo In this case, for elapsed times
nct indefinitely large compared to (vok)-l, variation of Uin(ﬁ}tlr;if,t'lr')
and Gij(§,tlr;§',t'!r') with r and r' can be neglected in computing sij’ etc,

Then it can be verified by direct substitution that the LHDI equations yield
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(8.18}-(8.20). In carrving out the demonstration, care must be taken tc
include in the L}DI equations all the extra terms induced by the additions
(8.17) to the underlying equations cf motion. A point of consistencv it

that these extra terms turn out not to affect the evolution of Uin(t;tlr;t'ﬁr')
or of Gin(tjtfr;t'!r'). provided that Ugn(tjto‘to;toito) vanishes.

The invariance properties of the LADI equations urcer random Galilean
transformation may be compsred with the behavior of the unaltered direct-
interaction equations. Ffor t = t', (8.20) exoresses the fact that the random
uniform velocity does not affect the simultaneous triple correlations induced
by interaction of the various nonzero wave-vector comoonents. In contrast,
the unaltered direct-interaction aoproximation predicts a spurious cecay of

1

these correlations with a characteristic time %(vgk)- .

9, RULATION TO TdE KOLMOGOROV THEORY

dhen tne turbulence is isctronic, Uiﬁ and Sin take the forms
- S . v e | Y ( rc . -
Uittt ef) = P (KU Ggtlesetin®) o 7 GOU (kstiesetiet),

S - Coviulun .
Gin(g;t!r,t'!r') = P, (k)G (kstlr;e'ir') » i e (kjtirseriet), (9.1)

and the LnDI equations of Sec. 8 can be reduced to scalar form. In -~articular,

(8.9) gives the energy-transfer function

t
i S S i
T(k,t) = u:zkaffﬂpqdoaqj ds{a(k,p,g)G (k;t!t;tES)US(p;tlt;t‘S)U (qatitstis)
' t

V]
) S S : "
=b(k,p,g)s 7 (pitit;tls)U” (g tltstls)U (kstit;els) ], (3.2)
where T(k,t) is defined by

urk ‘S, (kstititlt) = P, (K)T(k,t). (9.3)
in wn

rs
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The integration [IA in (9.2) is over all wavenumbers p and q which can form
a triangle with k, and the geometrical coefficients a and b are the same as
in the unaltered direct-interaction formula.2

The integration over the past in (9.2) involves correlations measured
along the paths of fluid elements, in contrast to the unaltered direct-
interaction app oximation where the time correlations are taken at fixed
points in space (cf. Sec. €&). For a fluid cbeying the Navier-Stokes equation,
the change of velocity along particle paths arises solely from the viscous
and pressure forces., If the terms representing these forces are omitted from
the equations of motion, then Us(k;tlt;tis) and Gs(k;tit;t|s) are independent
cf s. This property is preserved in the LHDI equations: If the viscous and
pressure terms are dropped, the equations for proopagation of the statistical
functions parallel to the t axis and along the diagonal in the (t,r) plane
become identical, and there is no variation with measuring time r. Thus (9.2)
states that the effective relaxation time for triple correlaticns of simul-
taneous amplitudes of wave~vector triads is determined by memory and decay
times associated with the viscous and pressure forces encountered along the
particle paths,

Now consider statistically stationary high-Revnolds-number flow. Suppose
that an inertial range exists., By this is meant a range of wavenurmbers below
which lies mcst of the kinetic energy and above which lies most of the mean-
square vorticity, or dissipation. If the energy-spectrum follows a power law,
these suppositions require

E(k) « k" (1 <n < 3), (9.4)

<
where E(k) = 2nk2US(kstltselt).
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Both the viscous and pressure terms in the Navier-Stokes equation involve
velocity gradients. With a spectrum of the form (9.4), the energv-range
velocity excitation makes a negligible concribution to the mean-sguare
acceleration of fluid elements, provided that the flatness factors of the
statistical distribution of the energy-range wavenumbers are not too large.

This implies that, if k is in the inertial rangs, the correlation time

t
T = [ Uk;t]t;t]s)ds/u(k;t|tst]e) (9.5)

-
is negligibly affected by the energy-range excitation and is, in fact, the
order of the reciprocal rms vorticity associated with wavenumbers of order k.
That is,
R O e N ¢ S F i (9.6)

This argument carries over to the LHDI equations because the gradient cverators
in the Navier-Stokes equation are, of course, carried through the perturbation
analysis that underlies the approximation. The vorticity associated with
wavenumbers much higher than k does not contribute appreciably to B because
of averaging effects over spatial volumes of order k-3 and times the order of
T .

The above considerations, taken together with what is known about the
predictions of the unaltered direct-interacticn equations, imply that the
LdDI equations yield a Kolmogorov inertial range (n = 5/3) and the asscciated
Kolmogorov dissipation range. Apart from the appearance of different time-
correlations, the unaltered direct-interaction and the LHDI equations are

identical; they have the same coupling coefficients for the interaction among

the wavenumber modes. The unaltered equations give an inertial range with
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n :* 3/2 and local energy-transfer within the range. It was shown in detail
in Ref. 1 that this value for n is due to the aopearance of the Lulerian

Yapt . -1 . .
correlation time (vok) s, where v_ 1s the total rms velccitv component, as

0
the effective memory time for simuitaneous triple correlations. It was
demonstrated in Ref. 1 that the Kolmororov spectrum emerges if this time is
reglaced by (vkk)-l.

If the velocity field has a Kolmogorov inertial range, then similar
arguments show that the LdDI scalar equations yield a 5/3-law scalar field
inertial range and yield Richardson's law for the relative diffusion of two
particles. Roberts5 investigated these questions for the unaltered scalar
direct-interaction equations and found, in accord with the velocity-field
case, that the Kolmogorov and Richardson laws emerged if the effective
memcrvy times in the inertial-range scalar transfer function were © (vkk)-l.

1f the above arguments are scund, to what extent are the LHDI results
a justification for Kolmogorov's assumptions? Very likelv, the principal
support they provide is equallv well supplied bv an elementary argument.

The LHDI equations can orly demonstrate some self-consistenc features of
Kolmogorov's basic assumpticns., But these featu.es are already demonstrated
to essentially the same extent by the fact that Kolmogorov's dimensiocnal
analysis vields an inertial-range spectrur which falls within th- bounds on n
given in (9.4)., A rigorous proof of the 5/3 inertial-rauge law would involve
much more than demonstrating self-consistency at the level of covariances or
spectra. The Kolmogorov law is a statistica: assertion. If it is correct,
there can stili be exceptional flows, cr exceptional regions in a gfven flow,

which dc not obey it. In order to estimate the possible contribution ¢f such
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exceptions,it would seem necessary to have some successive aprroximation
schemwe in which errors can be bounded.

What the LiDI equations do provide, assuming again that thev turn out to
have well-behaved solutions, is a guantitative embodiment of Kolmcgorov's
ideas, obtained by precisely defined analvtical overations on the havier-
Stokes equation, It can be argued that thev do this with the maximum
economy of material that wmight reasonably be exvected. The Lagrangian
correlation time seems intimately involved with Kolmogorov's reasoning, and
it is clear that in general the Eulerian and Lagrangian correlation times
must be treated together. In the energy-range the two times are intimately
related. Therefore it is plausible that an analytical approximation apolicable
to all spectrum ranges should involve the full function Uij(ﬁ,tlr;gf,t'lt').
Knowledge of the full function provides physically interesting information
which cannot be obtained from the Euler -~ covariance: for examdle, the
covariance of particle acceleration.

The LidDI equations are substantially more complicated than the unaltered
direct-interaction equations for the pure fulerian field. iowever, thev are
very much less complicated than the next-higher Eulerian aoproximation above
direct-interaction. The latter yields final equations involving triple
correlations explicitly, together with associated higher Green's functions,
and consequently involves enormous geometrical complication. Despite this,
it is only partially successful in suppressing the spurious relaxation effects
of the unaltered direct-interaction approximation.l

If the details of the time-correlation functions are not desired, these

functions may be fitted to functional forms which leave only certain charac-




~-4]-

teristic times to be cetermined from the LnDI ecuations. This orocedure is

successfui for the unaltered tulerian direct-interaction equations.la' 1

10. SCML WEAK POIRTS OF ThHE LaGI APPROXIXATION

It was remarked above that a model representaticn for the LiDl equations
has not been found and that therefore realizable covariance functions are not
fuaranteed. In contrast, the existence of a model reoresentation for the
unaitered direct-interaction eguations for the rereralized fields rives this
guarantee. The special sclutions so far found for tne Li3I eguations rive no
hint of unphvsical behavior, in the sense of negfative spectra or time-
caorrelation functions which do not fall nronerly to zero at infinite cifference
times, :owever, the intricacies of the equations are sufticient that further
reassurance would be comforting.

The LiDI equations have been obtained in this paver by an heuristic
modification of the direct-interaction eguations that expr sses analvticallv
KXolmogorov's idea of examining the dynamics of the Eulerian field in cocr<inates
moving locally with the flow. Wwithin the general structural framework of the
direct-interaction equations, the alterations of the triple-moment formulas
seem to be unique. Any change in the rules given in Sec. 6 anc 8 aopears to
result in less of one or more of the conservation, invariance, and ecuilibrium
properties. If rule (1) of Sec. 6 (inserticn of S superscrints) is changed,
the eguipartition equilibrium solution is destroyed. If the labeling times
s are changed to anything but t in anv or all of the terms, the Galilean

invariance properties are lost., iiowever, no evidence is presented that the
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LHDI aporcximation is related to anv formal exsansion schere in the clear
way that the unaltered direct-interaction aoproximation is related to the
iteration expansion in powers of zeroth-order covariances 1iné Jreen's functions.
The direct-interaction equations viela values cof the covariances which, when
expanced, agree with the exact formal expansion to tne lowest order in the
zeroth-order functions and which contain well-defined infinite subclasses of
the higher-order terms. If the LHDI values are expanded in the zeroth-order
functions, they also agree tc lowest order, but so far no cliear relation of
the nigher-order terms to the exact formal expansion has emergec. £ven where
the LiiDI equations give exactly correct final results, the structural relation
of the results to the term-by-term iteration exvansion is unclear. This may
be a less serious lack than the absence of a model representation, because
the iteration expansion, and all the other formal expansions oo far prooosed
for the turbulence problem are almost certainlv Givergent anc< the collecting
of subclasses of terms from them therefore need not be meaningful.

It should be noted finally that the LHUI equations aonear to yield less
statistical information than the unaltered direct-interaction anprcximation.
The latter yields a value for the general triple moment of the form

<ui(5,tlr)uj(§',t'ir')um(i",t"lr")>.

The Lnol prescription covers only those triple moments which appear in the
eguations of moticn for the covariances; that is, moments in which twec of
the times t, t', and t" are equal. If all three times are different, it is
not clear what fixed value should replace the labeling time s in carrving

out the lLagrangian-history modification.
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APPENDIX: EQUIPARTITION SOLUTIONS
txpanc the Eulerian field #(x,t) in the series

e(x,1) = Ju (t)e (x), (A1)

where Gn(f) is one of a complete set of real crthonormal eigenfunctions of

the equation 2

Ve + Anén = 0. (£2)

The complete set consists of a set which vanishes everywhere on the boundarizs
and a set whose normal derivative vanishes everywhere on the boundaries. Let
n {= 1,2,...) label the eigenfunctions in order of nondecreasing An.

Eq. (2.9) with x = 0 gives

v.(t) = [ A (v (1), (A3)
where the Anm(t) are functionals of g(g,t]t). The sum
§ v (07 = [le(x,0) 1%’ (24)

is a constant of motion for any initial condition. Suppose that cnly vn and
v, are excited initially. Constancy of (A4) at the initial instant then shows
that the Anm(t) identically satisfy

Anm(t) = - Amn(t)' {AS)

whence the system satisfies the Liouville theorem

L av_(t)/av (¢) = o. (46)
n n
It follows that the equipartition probzbility density
2
o(¢) = expi-igonst)):nwn) (A7)
is an absolute equilibrium distribution. (A7) is to be understcod in the
following sense. All v, and ¥_ for n or m greater than N (N as large as desired)

A
are dropped from (A3) and (Au4), yielding a finite system. If Gnm(t;t') is




L

the response matrix of the y's, then it followslq that
N
L - P ] 3
CRSIAS: » -(pnm(t,t D (t2th), (A8)

where the i1verage is over the suitably normalized distribution (A7). Trans-

formation back to x space, followed by the limit N + « then gives

vOxstlex' et le?) = Glxstltsx' et t') (¢ > t), (A9)
and (5.15) then follows from the fact that there is no r or r' dependence
when « = 0,

The inviscid cquipartition solution for the Fuleriar velocity field
satisfying (3.21) in an arbitrary domain may be established bv a similar
procedure, using an appropriate set of eigenfunctiocns. ([Note that this
solution cont~ins both shear and compressive velocity compcnents but that
the compressive componc its are static and do not affect the dynamics of the
shear components.] The technique of Ref, 14 ncw establishes (8.15) for
r Tty r' =t', The relation may then be established for general r and r'
by applving the technique of Ref. 14 to (3.18). This readily shows that
for any r, the field g(§,tir), considered as a function of t, is in equi-
partition equilibrium and satisfies a fluctuation-relaxation relation like

that of the tulerian field.
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FIGURE CAPTIONS

Fig. 1. Eveclution of g(g,tir) in the (t,r) plane from the initial time t,-
The point (t,r) may be either above or below the aiagonal.

Fig. 2. Propagation route in the (t,r) plane of the perturbation described
by 6(§,t|r;§'.t'|r'). The points (t,r) and (t',r') may be independentlv

either above or below the diagonal, but r 2 r' always.

Fig. 3. Paths of evolution and propagation associated with the direct-
interaction contributions to S and H. The points (t,r) and (t',r') may be
independent .y either above or below the diagc.al. In Fig. 3a, r > r' or

> <p'. In Fig. 3, r 2 r'.

Fig. 4, (a) Paths of evolution associated with the direct-interaction or
LHDI contribution to Sip 3nd M. . (b) Paths of propagation associated with

the contribution to Hir

and N, .
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